Numerical Investigation of High-Temperature Thermal Energy Storage Systems Using Concrete and Nitrate Salts: Optimization and Performance Analysis

Tewodros Eskemech Ayenew (1), Natnale Sitotaw Asefa (2)
(1) College of Engineering and Technology, Department of Mechanical Engineering, Bonga University, Ethiopia
(2) College of Engineering and Technology, Department of Mechanical Engineering, Bonga University, Ethiopia. Currently, a PhD student in Addis Ababa university.
How to cite (IJASEIT) :
Ayenew, T. E., & Asefa, N. S. (2025). Numerical Investigation of High-Temperature Thermal Energy Storage Systems Using Concrete and Nitrate Salts: Optimization and Performance Analysis. International Journal of Advanced Science Computing and Engineering, 7(1). https://doi.org/10.62527/ijasce.7.1.216

This research presents a numerical investigation of high-temperature Thermal Energy Storage (TES) systems, focusing on concrete as a sensible heat storage material and nitrate salts (KNO₃) as a phase change material (PCM). The study aimed to enhance the performance of TES systems in Concentrated Solar Power (CSP) plants by optimizing the number of Heat Transfer Fluid (HTF) tubes and analyzing different storage bed configurations. A 3D numerical model was developed using COMSOL Multiphysics 4.3a to simulate heat transfer processes, including fluid flow, conduction, convection, and phase change. A grid independence test ensured the accuracy of the simulations. The research identified that 25 HTF tubes provide an optimal balance between heat transfer efficiency and material usage in the nitrate salt TES model. Additionally, the cylindrical storage bed configuration reduced charging time by over 20% compared to a rectangular configuration. The results indicate that concrete can store up to 15 MJ of thermal energy, making it a viable option for CSP applications. The study also highlights the potential of embedding highly conductive materials like copper to enhance heat transfer. Recommendations for future work include exploring TES system performance under turbulent flow conditions and for intermediate temperature applications.

Achkari, O., & El Fadar, A. (2020). Latest developments on TES and CSP technologies–Energy and environmental issues, applications and research trends. Applied Thermal Engineering, 167, 114806.

Alnaimat, F., & Rashid, Y. (2019). Thermal energy storage in solar power plants: A review of the materials, associated limitations, and proposed solutions. Energies, 12(21), 4164.

Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341-378.

Barrasso, M., Langella, G., Amoresano, A., & Iodice, P. (2023). Latest advances in thermal energy storage for solar plants. Processes, 11(6), 1832.

Boretti, A., & Castelletto, S. (2021). High-temperature molten-salt thermal energy storage and advanced-Ultra-supercritical power cycles. Journal of Energy Storage, 42, 103143.

Cirocco, L., Pudney, P., Riahi, S., Liddle, R., Semsarilar, H., Hudson, J., & Bruno, F. (2022). Thermal energy storage for industrial thermal loads and electricity demand side management. Energy Conversion and Management, 270, 116190.

Esence, T., Bruch, A., Molina, S., Stutz, B., & Fourmigué, J. F. (2017). A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems. Solar Energy, 153, 628-654.

Fang, X., Zhuang, F., Chen, C., Wu, Q., Chen, Y., Chen, Y., & He, Y. (2019). Saturated flow boiling heat transfer: review and assessment of prediction methods. Heat and Mass Transfer, 55, 197-222.

Gautam, A., & Saini, R. P. (2020). A review on technical, applications and economic aspect of packed bed solar thermal energy storage system. Journal of Energy Storage, 27, 101046.

González-Roubaud, E., Pérez-Osorio, D., & Prieto, C. (2017). Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renewable and Sustainable Energy Reviews, 80, 133-148.

Ibarra, M., Sole, A., Martinez, M., & Cabeza, L. F. (2020). Advances in thermal energy storage systems: A review. Renewable and Sustainable Energy Reviews, 134, 110358.

Jad, U. M., & Shah, A. P. (2018). Numerical analysis on thermal energy storage tank filled with phase change material. JournalNX, 303-307.

Jayathunga, D. S., Karunathilake, H. P., Narayana, M., & Witharana, S. (2024). Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications-A review. Renewable and Sustainable Energy Reviews, 189, 113904.

Jiang, Y., Liu, M., & Sun, Y. (2019). Review on the development of high temperature phase change material composites for solar thermal energy storage. Solar energy materials and solar cells, 203, 110164.

Kenisarin, M., Mahkamov, K., & Kenisarina, I. (2020). High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 103, 83-95.

Koçak, B., Fernandez, A. I., & Paksoy, H. (2020). Review on sensible thermal energy storage for industrial solar applications and sustainability aspects. Solar Energy, 209, 135-169.

Kumar, R., Baig, M. J., & Pandey, A. K. (2021). Recent advances in thermal energy storage with phase change materials and molten salts for solar energy applications: A state-of-the-art review. Journal of Energy Storage, 42, 103066.

Kumar, R., Rao, Y. A., Yadav, A. S., Balu, A., Panda, B. P., Joshi, M., ... & Sharma, A. (2022). Application of phase change material in thermal energy storage systems. Materials Today: Proceedings, 63, 798-804.

Laing, D., Steinmann, W. D., Tamme, R., & Richter, C. (2011). Solid media thermal storage for parabolic trough power plants. Solar Energy, 85(4), 627-633.

Maaza, M. (2020). Latent and thermal energy storage enhancement of silver nanowires-nitrate molten salt for concentrated solar power.

Mao, Q. (2016). Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant. Renewable and Sustainable Energy Reviews, 59, 320-327.

Mubarrat, M., Mashfy, M. M., Farhan, T., & Ehsan, M. M. (2023). Research advancement and potential prospects of thermal energy storage in concentrated solar power application. International Journal of Thermofluids, 100431.

Niyas, H., Rao, C. R. C., & Muthukumar, P. J. S. E. (2017). Performance investigation of a lab-scale latent heat storage prototype–experimental results. Solar Energy, 155, 971-984.

Palacios, A., Barreneche, C., Navarro, M. E., & Ding, Y. (2020). Thermal energy storage technologies for concentrated solar power–A review from a materials perspective. Renewable Energy, 156, 1244-1265.

Prasad, L., & Muthukumar, P. (2013). Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Solar energy, 97, 217-229. Hasnain, S. M. (1998).

Qiao, G., Cao, H., Jiang, F., She, X., Cong, L., Liu, Q., ... & Ding, Y. (2019). Experimental study of thermo-physical characteristics of molten nitrate salts based nanofluids for thermal energy storage. ES Energy & Environment, 4(3), 48-58.

Raccanello, J., Rech, S., & Lazzaretto, A. (2019). Simplified dynamic modeling of single-tank thermal energy storage systems. Energy, 182, 1154-1172.

Rekkas Ventiris, G. (2021). Archimede concentrated solar power plant dynamic simulation: control systems, heat transfer fluids and thermal energy storage.

Singh, M., & Sørensen, B. (2017). A simplified approach for modeling thermal energy storage systems in concentrated solar power applications. Renewable Energy, 112, 181-193.

Yu, Q., Lu, Y., Zhang, X., Yang, Y., Zhang, C., & Wu, Y. (2021). Comprehensive thermal properties of molten salt nanocomposite materials base on mixed nitrate salts with SiO2/TiO2 nanoparticles for thermal energy storage. Solar Energy Materials and Solar Cells, 230, 111215