
International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

Vol. 4, No. 1, April 2022, pp. 32-47 32

Multi-SAP Adversarial Defense for Deep Neural Networks

Shorya Sharma a, 1, *

a School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India

1 ss118@iitbbs.ac.in

* corresponding author

1. Introduction

Adversaries can easily fool state-of-the-art deep learning models by making small perturbations

in the training samples that are imperceptible to a human. Such perturbed samples are called

adversarial samples, and attacks on deep learning models that make use of adversarial samples

are called adversarial attacks. For a successful attack, we require adversarial samples to be as

close as possible to the original (benign) sample, under specific distance metrics. Therefore, these

adversarial perturbations can be found by minimizing an objective function, a distance metric

between adversarial and benign samples, subject to certain constraints. The threat model for

adversarial attacks can be one out of black-box, grey-box or white-box, depending on the

attacker’s knowledge of the target deep learning model. We plan to develop our defense in a

black-box setting, where we assume that the adversary has no knowledge about the target model.

In an adversarial setting, “attacker” and “defender” can be thought of as two parties playing a

multi- move game, taking alternative turns to play their move. A successful “attack” will be a

gain for the attacker and a loss for the defender, and likewise, a successful “defense” will be a

gain for the defender and a loss for the attacker. Thus, this approach manifests itself into a zero-

sum two-person

ART IC LE INF O

ABST RACT

Article history

Received December 10, 2021

Revised December 27, 2021

Accepted Mar 19, 2022

 Deep learning models have gained immense popularity for machine
learning tasks such as image classification and natural language
processing due to their high expressibility. However, they are vulnerable
to adversarial samples - perturbed samples that are imperceptible to a
human, but can cause the deep learning model to give incorrect
predictions with a high confidence. This limitation has been a major
deterrent in the deployment of deep learning algorithms in production,
specifically in security critical systems. In this project, we followed a
game theoretic approach to implement a novel defense strategy, that
combines multiple Stochastic Activation Pruning with adversarial
training. Our defense accuracy outperforms that of PGD adversarial
training, which is known to be the one of the best defenses against several
L∞ attacks, by about 6-7%. We are hopeful that our defense strategy can
withstand strong attacks leading to more robust deep neural network
models.

This is an open access article under the CC–BY-SA license.

Keywords

Adversarial attacks

Adversarial defenses

Stochastic activation pruning

Deep neural networks

PGD

FGSM

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 33
 Vol. 4, No. 1, April 2022, pp. 32-47

∞

game. We hypothesize that such a zero-sum game approach will enable us to develop a strong

adversarial defense.

We designed our mixed strategy defense that builds on the Stochastic Activation Pruning (SAP)

algorithm. Stochastic Activation Pruning is a method which stochastically drops out nodes in each

layer during forward propagation. The SAP function converts the activation map of a layer to a

multinomial distribution and samples the nodes with replacement with a probability proportional to

their activation magnitudes. Unlike the original SAP algorithm [15], we leverage the SAP method to

create a novel technique utilizing multiple SAP (Multi-SAP) networks. Instead of creating a single

model, this multi-SAP method iterates over the SAP function multiple times creating differently

pruned networks attributed to the variation in sampling in every iteration. We implemented two

defense strategies using multi-SAP on top of adversarial training which improved PGD adversarial

defense accuracy by roughly 6-7%.

2. Related Works

There has been an extensive repertoire of work on adversarial attacks and defenses, a few of which

have been discussed in the sections below.

2.1 State-of-the-art Attacks

As discussed in Section 1, adversaries can fool deep learning models by making small perturbations

in the training samples, that are imperceptible to the human eye. This creates adversarial samples,

and such attacks against deep learning models are called adversarial attacks. For a successful attack,

we require such adversarial samples to be as close as possible to the original (benign) sample, under

specific distance metrics (of which the most commonly used metric is the Lp metric). Therefore, these

adversarial perturbations can be found by minimizing an objective function, a distance metric

between adversarial and benign samples, subject to certain constraints.

For adversarial attacks on image classification, one of the most common distance metrics has been

the Lp norm [1]. For instance, the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

method minimizes the Lp norm between the benign and adversarial sample, subject to the constraint

that their labels are not equal [2]. Goodfellow et al proposed an untargeted attack (Fast Gradient Sign

Method (FGSM)), that generates samples in the L∞ neighborhood of benign samples. They performed

one-step updates along the direction of the gradient to increase the loss in the steepest direction [3].

Following this work, Kurakin et al implemented a Basic Iterative Method (BIM) that improved the

performance of FGSM by running a finer iterative optimizer [4]. Building on this, Dong et al

incorporated momentum memory into BIM, called the momentum-iterative FGSM (MI-FGSM),

inspired by momentum-based optimization [5]. However, the most successful attacks using this

approach have been proposed by Carlini and Wagner, in which they generated L0, L2, and L∞ norm

measured samples, and solved an optimization problem similar to the L-BFGS attack. They achieved

a 100% attack success rate on the MNIST, CIFAR-10 and Imagenet datasets [6].

Instead of optimizing on individual samples like the techniques discussed above, Zheng et al

proposed an attack that optimized over the potential adversarial distributions (called distributionally

adversarial attack (DAA)) [7]. Another interesting approach is the Universal Adversarial Attack [8],

which tries to find the minimum additional perturbations that can be added to a benign sample to

make it adversarial. This approach relies on an iterative procedure to update the perturbation vector

and has demonstrated successful results against CaffeNet, ResNet, GoogleNet and VGG. Recently,

Generative Adversarial Networks (GAN)-based attacks were proposed to generate adversarial

samples. In these attacks, Xiao et al trained a generator to maximize adversarial loss and GAN loss

to learn the adversarial distribution [9]. Additionally, adversarial patches can be added to specific

34 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

 Vol. 4, No. 1, April 2022, pp. 32-47

Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

sections of a benign sample, that can perturb a patch of the image leading to misclassification [10,

11, 12].

2.2 State-of-the-art Defenses

Despite their breakthrough applications, DNNs are vulnerable to adversarial attacks. Various classes

of methods can handle these attacks, namely, adversarial training, randomization, denoising etc. The

most common defense technique is adversarial training where adversarial samples generated from

adversarial attacks are fed into DNNs during training to increase their robustness against adversaries.

It is similar to a min-max game where we try to minimize the loss from the most effective adversarial

samples. FGSM adversarial training uses both benign and FGSM generated adversarial samples to

train the DNN. Projected Gradient Descent (PGD) adversarial training has proven to be the best

defense against L∞ based attacks [13]. However, it requires high computational resources making it

inefficient. Ensemble adversarial training uses a more diverse set of samples for training making it

more effective. Additionally, Generative adversarial training-based defenses employ a generator, a

discriminator, and an auxiliary classifier to make the DNN more robust to these attacks.

Further, another class of defense techniques use randomization schemes to mitigate the effect of

adversarial perturbations which usually work well for black-box and grey-box attacks but fail for the

white-box setting [14]. The random input transformation technique resorts to resizing/padding of

input images followed by training. Random noising, aka random self-ensemble, adds a noise layer

before each convolution layer and ensembles the prediction results over these random noises to

stabilize DNNs. Moreover, stochastic activation pruning is a mixed defense strategy where a random

subset of activations is pruned and the survivors are scaled up for compensation [15].

Apart from these techniques, denoising techniques aim at removing the perturbations from the input

itself or alleviate their effects on the high-level features learnt by DNNs. Conventional input

rectification is one such technique which uses bit reduction and image blurring to remove the

perturbations [16]. Defense GAN searches for an image close to the adversarial input to learn the

distribution and generate benign samples that can be fed into the classifier. MagNet, an autoencoder

based denoising has a detector and a reformer where the detector distinguishes between the

adversarial and benign samples and the reformer tries to rectify the adversarial samples into benign

samples. Feature denoising tries to minimise a feature level loss function to reduce the difference

between the benign and the adversarial samples [17].

2.3 Our attacks and defenses

Gradient based attacks leverage the backpropagation process to develop a perturbation vector for the

input image by making a slight change to the input gradients. These methods consider model

parameters to be constant and the input to be a variable which in turn is used to obtain the perturbation

vector. This vector satisfies the condition of being very similar to the input while fooling the neural

network model at the same time such that it’s imperceptible to the human eye. FGSM and PGD are

two such gradient based attacks.

The two main approaches to perform gradient-based attacks are one-shot and iterative attacks. In

one-shot attacks, the attacker takes a single step along the direction of the gradient, whereas in

iterative attacks, the attacker takes several steps, instead of a single one. The FGSM method is a one-

shot attack, whereas PGD is an iterative attack.

2.3.1 FGSM Attack

The Fast Gradient Sign Method (FGSM) is a form of untargeted attack, proposed by Goodfellow et

al, that generates adversarial

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 35
 Vol. 3, No. 1, April 2021, pp. 1-9

 Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

samples in the L∞ neighborhood of benign samples. It generates adversarial images by adding pixel-

wide perturbations along the direction of the gradient. An FGSM-generated adversarial sample can

be defined as,

In the above equation, x is the benign sample that has been perturbed by the addition of the gradient

to obtain an adversarial image, x’. The gradient can be computed as shown in equation (2), where δ

is 0 in the first time-step. δ can be adjusted according to a step size α (given by equation (3)), such

that δ lies in the range [-ϵ, ϵ], thereby satisfying the inequality in equation (4).

Figure 1. Adversarial training defense illustration

2.3.2 PGD Attack

Projected Gradient Descent (PGD) is an iterative attack where it takes the same step as an FGSM

multiple times in the direction of maximising loss on a particular input while keeping the size of

perturbation smaller than epsilon. In PGD, one starts from a random perturbation in the L∞ space

around an input and takes a gradient step in the direction of greatest loss in an iterative manner until

convergence. To satisfy the constraint, the PGD projects the adversarial samples learned from each

iteration in the epsilon constrained L∞ space of the benign input sample.

2.3.3 Adversarial training defense

Adversarial training is the most common defense technique is adversarial defense where adversarial

samples generated from adversarial attacks are fed into DNNs during training to increase their

robustness against adversaries. In simple terms, it is like an added data augmentation step where

perturbed images are fed into the model as a preprocessing step where these perturbed images are

created to best fool the deep neural-network model and train to reduce overfitting. Figure 1

demonstrates a visualization of adversarial training defense.

36 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

 Vol. 4, No. 1, April 2022, pp. 32-47

Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

2.3.4 Stochastic Activation Pruning (SAP)

Stochastic Activation Pruning is a method which stochastically drops out nodes in each layer during

forward propagation. The probability of retaining a node is directly proportional to the magnitude of

its activation. So, the SAP function converts the activation map of a layer to a multinomial

distribution and samples the nodes with replacement with a probability proportional to their

activation magnitudes. Equation 6 shows the probability of sampling the j’th activation value, (hi)j.

After pruning, the remaining surviving nodes are scaled up by the inverse of the probability of

sampling the nodes over all the draws, following equation 7.

Figure 2. Illustration of SAP

3. Dataset Description

CIFAR-10 is a benchmark dataset used to evaluate image recognition classification tasks. It consists

of 10 classes with 6,000 32x32 colour images each. The 10 different classes represent airplanes, cars,

birds, cats, deer, dogs, frogs, horses, ships and trucks. The dataset comprises a total of 50,000 training

images and 10,000 test images. We have imported the train and test data from torchvision and have

also augmented the train dataset by horizontally flipping the images. Since most of the research has

been done using the CIFAR-10 dataset, we believe that it will be a good benchmark to compare our

model against state-of-the-art attacks and defenses. Another advantage of this dataset is that it is

computationally modest.

4. Evaluation Metrics

The objective of adversarial attacks is to fool a classifier into misclassifying samples that are only

slightly perturbed from original samples in a way that is imperceptible to a human. Accordingly, to

evaluate our adversarial attack or defense, we need a metric that can capture how many samples are

correctly classified by our classifier in different scenarios such as when the input images are

unperturbed, when they are perturbed using a certain attack technique and when the model has been

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 37
 Vol. 3, No. 1, April 2021, pp. 1-9

 Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

defended using a certain defense technique. Thus, we use accuracy as our evaluation metric, which

we define as the percentage of images that are correctly classified by our classifier. A higher accuracy

means that our classifier is doing a good job, whereas a low accuracy means that our classifier is not

being able to perform the classification task properly. A good attack would ideally be successful in

lowering the baseline accuracy of the classifier, whereas a strong defense would be able to sustain

the attack and still give a high accuracy for classification.

5. Description of Baseline Model

Our adversarial attack and defense setting is on an image classification task where we perturb benign

input images to confuse a trained deep neural network. For our project, we have used two kinds of

convolutional neural networks, namely, ResNet18 and VGG16, as the defender model and the

attacker model respectively. The reason behind choosing two different models for attack and defense

has been explained in the subsequent sections. We first implemented the CIFAR-10 classifiers, then

implemented our attacks on the defense model using the attack model, following which we developed

and evaluated our defenses on the defense model. We discuss each of the above steps in detail below.

Figure 3. Flow of an Adversarial Attack

5.1 CIFAR-10 Classifiers

5.1.1 Defense model

ResNet18 [20] is a convolutional neural network that consists of 18 layers. The input image for a

ResNet model is 224x224, whereas the CIFAR10 dataset consists of images of size 32x32. The

parameters of the network have been adjusted to accommodate for the smaller size of images in this

dataset. The network consists of several convolutional layers with feature map dimensions of [64,

128, 256, 512], kernel size of 3x3 and appropriate stride and padding values at each layer to obtain

the suitable input sizes for each hidden layer. Each convolution layer is also followed by a batchnorm

and activation layer, with appropriate skip connections. It is concluded with an adaptive average

pooling layer and a 10-way fully-connected linear layer, to obtain the classification results. Xavier

normal initialization was used for the weights of the convolutional and linear layers. When this model

was trained using an SGD optimizer with a learning rate of 0.15, weight decay of 1e-3, momentum

of 0.9, a StepLR scheduler with gamma of 0.85 for 40 epochs, a test accuracy of 92% was achieved.

38 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

 Vol. 4, No. 1, April 2022, pp. 32-47

Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

5.1.2 Attack model

The VGG16 model [21] is also a convolutional neural network, that consists of 16 layers. The

parameters of the model are set according to an input image size of 224x224, which have been

adjusted to accommodate for the smaller size of images (32x32) in the CIFAR-10 dataset. It consists

of several convolutional layers with feature map dimensions of [64, 128, 256, 512], kernel size of

3x3 and appropriate stride and padding values at each layer to obtain the suitable input sizes for each

hidden layer. Every convolutional layer is also followed by batchnorm and activation layers,

following which every second convolutional layer consists of a max pooling layer, with a kernel size

of 2x2 max pooling layer and a 10-way fully-connected linear layer, to obtain the classification

results. Xavier normal initialization was used for the weights of the convolutional and linear layers.

When this model was trained using an ADAM optimizer with a learning rate of 1e-3, weight decay

of 5e-6, momentum of 0.9, a StepLR scheduler with gamma of 0.85 for 40 epochs, a test accuracy of

89.32% was achieved.

Table 1. Classification accuracy of various combinations of attacks and defenses

Attack Model

(VGG 16)

Defense Model (ResNet18)

Base Classifier FGSM Trained

Model

PGD Trained

Model

FGSM & PGD

Combined Model
PGD Attack 30,64% 37,55% 61,74% 64,26

FGSM Attack 37,26% 71,91% 71,76% 71,47%

5.2 Attacks

Most of the existing work on adversarial attacks using Lp norm uses L∞ attacks, and hence, for our

baseline attack, we decided to concentrate only on L∞ attacks. L∞ norm is defined as the maximum

of the absolute values of a vector’s components. L∞ distance or max norm distance looks at the

maximum pixel difference between the actual image and the adversarial image. The objective of an

L∞ adversarial attack is to limit the L∞ norm of the noise to a certain value(epsilon) such that the

adversarial image is as close as possible to the input but at the same time different enough for the

model to misclassify. We decided to implement two of the most common L∞ attacks, namely Fast

Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD).

We implemented these attacks using the Pytorch framework, following the equations described in

Section 2. We followed the approach illustrated in Figure 3 to emulate the attacker. We used the

attack model MA (VGG16) to generate adversarial image set Ai using an attack technique TA, and then

fed these adversarial images into our defense model MD (ResNet18) for classification. For the attack

technique TA, we experimented with both FGSM and PGD attacks, the choice of hyper-parameters

for which are discussed in the Evaluation Section 5.4.

5.3 Defenses

We chose to go ahead with adversarial training for our baseline defense strategy because it is a very

common method of adversarial defense, and it is quite trivial to implement. Our defense approach

using adversarial training followed the workflow as illustrated in the blue “Defense” box in Figure

3. We used an attack technique TB on our defense model MD (ResNet18) to generate adversarial

image set Aj, and then trained MD using images from Aj. In our approach, we experimented with

generating Aj using both FGSM and PGD attack methods, and tested our defense against both the

attack techniques. We used the same code that we had used for our attack implementations to

generate adversarial samples, but for defense, we used the defense model MD (ResNet18) instead.

We discuss the effectiveness of the defense and summarize our findings in the next subsection.

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 39
 Vol. 3, No. 1, April 2021, pp. 1-9

 Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

∞

5.4 Experimental Evaluation

We tried to emulate a setting as close to a grey-box setting as possible in our baseline experiments.

We first assumed that both the attacker and the defender do not know the kind of model that is being

used by the other party. We achieved this by using two different types of models for attack and

defense, namely, ResNet-18 as our defense model MD and VGG16 as our attack model MA.

We first attacked the defense model MD with adversarial images generated from the attack model MA

using both FGSM and PGD attacks separately. For the FGSM attack, we tuned the hyperparameter

ϵ to obtain the best attack. Using an ϵ value of 0.15, the generated perturbed images were successful

in bringing down the accuracy of MD from 92% to 37.26%. For the PGD attack, we tuned three hyper-

parameters (α, ϵ and number of iterations) such that the product of ϵ and number of iterations is

approximately equal to the value of α. Using the values of 50, 1/255 and 0.2 for α, number of

iterations and ϵ respectively, the generated adversarial images brought down the accuracy of MD from

92% to 30.64%.

We then implemented our defenses on MD and evaluated the robustness of the defense against both

FGSM and PGD attacks. The hyperparameters that we chose for both FGSM and PGD adversarial

training were different from those in our attacks, and this was another attempt to emulate a grey-box

setting - the defender does not know what hyperparameters were chosen by the attacker even if they

know the attack method. Our first defense mechanism was training MD using FGSM generated

adversarial images from MD, for which we chose an ϵ value of 0.05. This defense was able to resist

well against FGSM attack, and the model accuracy came down to only 71.91%, in contrast to the

initial drop to 37.26%. However, this defense performed poorly against PGD attack, and the accuracy

of the MD still came down to 37.55%.

Our second defense approach involved training MD using adversarial images generated using the

PGD attack on MD, and we chose the hyperparameter values of 40, 2/255 and 0.3 for α, number of

iterations and ϵ respectively. This defense was able to resist FGSM attack almost as well as the FGSM

adversarial training approach, and the defended model achieved an accuracy of 71.76%. It performed

decently, though not as effectively, on PGD attack too, with MD achieving an accuracy of 61.74%.

We also tried a combined defense technique, by adversarially training MD using both FGSM and

PGD generated adversarial images, and this performed almost as well as PGD defense against FGSM

attack, with MD achieving an accuracy of 71.47%, but slightly better than PGD defense against PGD

attack, enabling MD to achieve an accuracy of 64.26%. The table in figure 4 gives a summary of our

classification accuracy for various attacks and defenses.

6. Our Contribution

6.1 Intuition

A preliminary strategy that we used in our baseline was to have multiple L attacks on our defense

model (ResNet18) and measure the impact of each on the accuracy. Another reason to have multiple

attacks was to train our defense model on more than one to make it more robust. Ideally, we would

want to have our defense model to be adversarially trained against all possible attacks, but this can

be a computational nightmare. Since we can’t adversarially train our defense model on all possible

attacks, we hypothesize that having a defense network consisting of multiple adversarially trained

models that are different from each other, and taking a combination or intelligent selection of the

classification results from these diverse models is more robust against a variety of attacks. This

method should make it difficult for the attacker to emulate the defense network since implementing

an attack against a large number of models is computationally expensive.

40 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

 Vol. 4, No. 1, April 2022, pp. 32-47

Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

We can also tie this strategy back to the zero-sum two player game in game theory, in which the

maxmin value is the highest value that the attacker (Player 1) can be sure to get without knowing the

defender’s (Player 2’s) moves, and equivalently, it is also the lowest value the defender can force the

attacker to receive when they know their moves. Thus, we can replicate this game theory based mixed

strategy by using a set of diverse models to reduce the reward that an attacker gets by making an

intelligent classification decision that is based on the input, that is, the attacker’s move.

6.2 Diverse Network Creation

To test our hypothesis, our first step was to create a set of multiple models. We used three different

methods to create different models from the ResNet18 base network. The first method was to use

different subsets of the training dataset to train our model while keeping the accuracy levels close to

the baseline model. The second method was to use different weight initializations and train the model

on the entire training dataset. The final method involved the addition of skip connections every fourth

and sixth layers in the ResNet architecture.

The second step was to adversarially train these multiple models because we wanted to leverage both

diversity and adversarial training to defend against an attack. Diversity among the models would

ensure that not all the models fail against a particular attack and that the majority of them will still

succeed against the attack. This way we can take the majority vote from these models and predict the

correct class. Thus if not all, some of the robust networks will be able to defend against the attack.

We created a pool of models containing both vanilla and adversarially trained models. However,

having multiple models was not enough and it was important to ensure that these models were

diverse.

For checking the diversity of the models in the pool that we created, we tried to find the correlation

between the models. A lower correlation between two models would indicate that they are more

diverse, whereas a higher correlation would indicate that they are less diverse. We computed the

correlation between two models by calculating the cosine similarity between the gradients of the loss

of the models with respect to the test datum . The pairwise correlation values that we obtained using

this method for our set of models were quite low and seemed to suggest that our models were diverse.

However, when we tested these models against FGSM attack, they performed as poorly as our

baseline model, and in some cases even worse. Given our hypothesis that having a diverse set of

uncorrelated models implies that not all models fail against a particular attack, we also tried to

randomly pick a model from our pool to classify each input, hoping that the inherent diversity would

yield more robustness. However, we found that this technique did not work either, and performed

poorly against the attack.

We thus realized that the low values of correlation as a test of diversity was misleading. As an

alternative method, we turned to a naive method of calculating the number of agreements and

disagreements in the predictions of the models to gauge how diverse they are from one another. If a

set of models are robust to an adversarial image, we would expect them to give the correct prediction,

and be in agreement with each other. However, if the attack is successful, then the models would

give incorrect predictions. In this scenario, if we look at the incorrect predictions of the set of models

and find that they are the same incorrect predictions, then we can say that the models are not diverse

from one another. Our calculated agreement and disagreement numbers between the models

indicated that they were not very diverse to one another, but it was still difficult to ascertain anything

about the diversity using these numbers. We summarized all of these experiments and the results in

Section 6.4.

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 41
 Vol. 3, No. 1, April 2021, pp. 1-9

 Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

6.3 Stochastic Activation Pruning

After conducting the diversity tests as explained in the above section, we realized that our approaches

for creating models were not producing a very diverse pool of models. Thus, we tried to find a new

method to create a pool of diverse networks. We decided to try Stochastic Activation Pruning

(SAP)[15] which is activated after receiving the input (attacker’s last move). This was a better

approach because instead of finding new methods to create new models and training them, we could

just use our existing models and prune them without any need for further training, saving us tons of

time.

Stochastic Activation Pruning is a method which stochastically drops out nodes in each layer during

forward propagation. The probability of retaining a node is directly proportional to the magnitude of

its activation. So, the SAP function converts the activation map of a layer to a multinomial

distribution and samples the nodes with replacement with a probability proportional to their

activation magnitudes. After pruning, the remaining surviving nodes are scaled up by the inverse of

the probability of sampling the nodes over all the draws. In our case, we are performing SAP after

every ReLU layer and sampling 100% of the nodes every layer. Unlike the SAP paper, we wanted to

leverage the novel SAP method to create multiple SAP (Multi-SAP) networks instead of creating

just one by iterating over the SAP function multiple times which creates differently pruned networks

attributed to the variation in sampling in every iteration.

6.3.1 Novel Multi-SAP Defense Approach

Our updated defense strategy was to apply Multi-SAP on adversarially trained models and then take

a majority vote of classification results from these models. We experimented with two defense

strategies to evaluate the efficacy of adding Multi-SAP on top of our adversarially trained models.

In the first approach we built a set of 50 networks by applying SAP with 50 iterations to one

adversarially trained base network. The second approach was to take a pool (for example 5) of

adversarially trained networks and apply SAP on all of them for 10 iterations, each giving us 50

networks. This combined with the initial five adversarially trained models gave us a total of 55

models. Both the strategies were followed by taking a majority vote of classification results obtained

from the diverse set of networks to obtain a final prediction. A visualization of this can be observed

in Figure 4.

6.4 Experimental Evaluation and Results

6.4.1 Creation of multiple networks

Our first step towards testing our hypothesis was the creation of multiple models from the ResNet18

base network. While creating these multiple models, we ensured that the classification accuracy was

close to that of the baseline model (92%). Several methods were implemented:

42 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

 Vol. 4, No. 1, April 2022, pp. 32-47

Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

Figure 4. Visualization of our novel Multi-SAP approach

1. Different training data subsets and random seeds: We took different subsets of the training

dataset and trained them separately to obtain multiple models. We considered a range of values

between 30% to 100% of the training data. However, it was observed that considering less than

50% of the training data brought the classification accuracy to lesser than 80%. Therefore, we

retained only those models that were trained on greater than 50% of the training dataset. We

created four such models that were generated from 50%, 62.5%, 75% and 87.5% of the training

data. We also used different random seeds that resulted in sampling different training data points

when 75% of the training data was used.

2. Different weight initializations: We used different weight initialization methods for the

convolutional and final linear layer, to create different models. For the purpose of our experi-

ments, we have used kaiming-uniform, kaiming-normal and orthogonal weight initializations

and trained these on the complete training dataset.

3. Addition of skip-connections: Our final method involved the addition of skip connections

every 4th and 6th layer. We created multiple models by adding more skip connections, in

addition to those that are already present in the ResNet18 model. We created two such models

by adding an additional skip connection every fourth and sixth layer.

6.4.2 Diversity tests

Our next step was to check the amount of diversity between the above-created models and if these

models are diverse enough to defend against any attack. We did this through the following

experiments:

1. Correlation between gradients: We measured the correlation using Pytorch’s inbuilt function,

nn. CosineSimilarity, that measures the cosine similarity between two tensors. We used this
function to compute the cosine similarity between the gradients of pairwise models with respect

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 43
 Vol. 3, No. 1, April 2021, pp. 1-9

 Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

to the test datum as shown in table in Figure 6. A lower cosine similarity value denotes a lower
correlation between the gradients, and therefore, greater diversity between the models.

Table 2. Correlation between gradients

 ½ train 5/8 train 7/8 train ¾ train Orthogonal Kaiming

uniform

Kaiming

normal

½ train - 0,2141 0,1724 0,1464 0,1235 0,1077 0,0882

5/8 train - - 0,1993 0,1738 0,1720 0,1381 0,1368

7/8 train - - - 0,0950 0,2074 0,1479 0,1096

¾ train - - - - 0,2036 0,1990 0,0399

Orthogonal - - - - - 0,2167 0,0696

Kaiming

uniform

- - - - - - 0,1072

From table in Figure 2, we observe that all models have really low correlation values ranging

from 0.04 to 0.21 when calculated pairwise. The lowest being between 3/4th train and kaiming-

normal models. A low pairwise correlation between the models, from the table above, seemed

to imply that our models are diverse. We then carried out the following defense approaches -

(a) We performed the attack against this defense network (consisting of diverse models). Given our

hypothesis that having a diverse set of uncorrelated models implies that not all models fail

against a particular attack, we tried to randomly pick a model from our pool to classify each

input, hoping that the inherent diversity would yield more robustness. However, we found that

this technique did not work, and performed poorly against the FGSM attack.

(b) Due to the failure of this defense strategy, we adversarially trained the pool of models using

PGD adversarial training and created a new set with the adversarially trained models instead of

the vanilla models. Our intuition behind adversarially training these models was that creating

more robust individual models might improve our defense. Following the same hypothesis as

stated above, we randomly picked a model from the new pool of adversarially trained models

and tried to classify each input. However, this technique performed only as well as the baseline

single adversarially trained ResNet18 model.

(c) Finally, we tried to obtain a majority vote of predictions obtained from the pool of adversarially-

trained models, rather than randomly picking a model. This technique gave a 2-3% increase in

the accuracy against FGSM attack compared to random selection.

From these experiments, we realized that the low correlation values that we had obtained might

not be a true test of the diversity between the models.

2. Disagreements in model predictions: Since low values of correlation as a test of diversity was

misleading, we tried an alternative approach to test the diversity between the models. As
explained in Section 6.2, we calculated the number of disagreements in the predictions of the

models, the results of which are tabulated in Tables 3 and 4.

The number of disagreements are counted out of the predictions made for the 10,000 test images.

As we see that ½ train seems to have more disagreements with the other models for both the

attacks however, there is no concrete way to conclude that a particular number of disagreements

can confirm diversity.

Therefore, it was difficult to infer the amount of diversity between the models using the numbers

shown in Tables 3 and 4.

44 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

 Vol. 4, No. 1, April 2022, pp. 32-47

Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

After conducting the above tests for diversity, we realised that our initial two steps were not

producing a very diverse pool of models. Therefore, we tried to implement the Stochastic

Activation Pruning (SAP) method to create a pool of diverse networks.

Figure 3. Number of disagreements in model predictions for FGSM attack

FGSM Attack ½ train ¾ train orthogonal 7/8 train Kaiming

uniform
½ train - 3361 3286 3599 3405

¾ train - - 2743 2934 3161

Orthogonal - - - 2772 2404

Kaiming

uniform

- - - - 3196

Figure 4. Number of disagreements in model predictions for PGD attack

FGSM Attack ½ train ¾ train orthogonal 7/8 train Kaiming

uniform

½ train - 3603 3658 4220 3650

¾ train - - 3247 4040 3472

Orthogonal - - - 3761 2784

Kaiming

uniform

- - - - 4005

6.4.3 SAP-based defense

As discussed in the section above, we implemented two defense strategies using SAP. It is a method

to stochastically drop nodes in each layer during forward propagation. A major advantage of this

approach is that re-training the model is not necessary. SAP is applied to the activations of each layer

in the neural network. The general algorithm of SAP is as follows:

1. For each layer, we first normalize the activations to obtain a probability value.

2. This is followed by converting each activation map into a multinomial distribution, such that the

probability is directly proportional to the absolute value of the activations.

3. Random samples are then drawn with replacement from the activation map according to this

probability distribution. This method makes it easy to determine if an activation would be sampled

at all. If it is not sampled, the activation is set to 0.

4. If the activation is sampled, it is re-weighted to maintain the overall dynamic range of the

activations.

6.4.4 Defense Strategy 1

In our first defense strategy, we use one base network, here, the base ResNet18 model and

adversarially train it. As mentioned in the above Section, different models are produced every time

SAP is applied, owing to the variation in sampling at each iteration. Therefore, we applied 50 random

seeds and obtained 50 differently pruned models of the base adversarially trained model. We then

obtained a majority vote among the classification results from each of these 50 models. The results

are further elucidated in the Table 5.

In the table, we demonstrate our defense technique against six L attacks, imported from the

torchattacks library in Pytorch. The first column represents the defense performance when the attacks

were performed against a single non-adversarially trained model. This is a vanilla model with no

defense applied to it. The second column consists of the results when the base model was

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 45
 Vol. 3, No. 1, April 2021, pp. 1-9

 Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

∞

adversarially trained and hence the defense performance improved from the previous one. The final

column demonstrates the results of Multi-SAP, which are comparable to those of adversarial defense.

Table 5. Performance of defense strategy 1 against different L∞ attacks on the first 1000 test images of the

CIFAR10 test data

L∞ TORCH ATTACK Single Non adversarially

trained model

Single adversarially

trained model

Adversarially trained

our SAP defense

BIM 46% 55,70% 56,70%

RFGSM 33,60% 50,10% 51,50%

APGD 41,30% 54,60% 55,00%

TPGD 36% 53,80% 54,60%

FFGSM 37,90% 54,80% 55,13%

MI-FGSM 41,60% 55,20% 56%

Table 6. Performance of defense strategy 2 against different L∞ attacks on the first 1000 test images of the

CIFAR10 test data

L∞ TORCH ATTACK Single Non adversarially

trained model

Single adversarially

trained model

Adversarially trained

our SAP defense

BIM 46% 55,70% 62,40%

RFGSM 33,60% 50,10% 56,10%

APGD 41,30% 54,60% 60,70%
TPGD 36% 53,80% 61,20%

FFGSM 37,90% 54,80% 60,60%

MI-FGSM 41,60% 55,20% 61,30%

6.4.5 Defense Strategy 2

In our second defense strategy, we utilize 5 different base networks that are obtained using different

splits of training data and weight initializations. These 5 networks are then adversarially trained.

Now, using 10 random seeds, we create 10 diverse networks from each of these five adversarially

trained networks, thereby producing 50 diverse networks. These combined with the 5 non-SAP base

adversarial networks produced a total of 55 networks. The results are further demonstrated in the

table 6.

In the table, we demonstrate our defense technique against six L∞ attacks, imported from the

torchattacks library in Pytorch. The table follows the same format as Table 6 in the previous section.

Here, the final column demonstrates the results of this strategy of Multi-SAP, which show an

improvement of about 6-7% from the adversarial defense technique. As mentioned in the Literature

Review, the PGD adversarially trained defense is one of the strongest defenses against most L attacks

[13]. Our defense managed to outperform adversarial training as well, which can prove very

promising.

7. Conclution

Adversarial attacks against state-of-the-art deep neural networks is indeed a tough battle to combat,

and building models robust to these attacks is imperative for the adoption of such systems in the real

world. We looked at this problem from a game theoretic perspective and were successful in designing

a defense strategy against L∞ attacks that takes into account the attacker’s current move. The results

obtained from our novel multi-SAP defense technique demonstrate that the usage of diverse networks

on top of adversarial training can prove to be a strong defense. The fact that our defense outperforms

PGD adversarial training, one of the most powerful defenses against L∞ attacks, by about 6-7%, is

reflective of our contribution to the research in this area.

46 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533

 Vol. 4, No. 1, April 2022, pp. 32-47

Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

8. Future Work

While it is impressive to come up with a novel defense strategy that outperforms PGD adversarial

training, we think that we can improve our results by intelligently selecting classification results from

the diverse models instead of using a simple majority vote. Additionally, detecting whether an input

is adversarial or not after the attacker’s last move will help us further optimize our defense by running

Multi SAP only in the case of an attack. Moreover, we can also tune the sampling parameter in the

SAP algorithm and evaluate how it affects the accuracy numbers. We are hopeful that these additional

steps will strengthen our defense and help us secure our deep learning systems.

References

[1] Ren, K., Zheng, T., Qin, Z. and Liu, X., 2020. Adversarial attacks and defenses in deep learning.

Engineering.

[2] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, et al. Intriguing properties of

neural networks. 2013. arXiv:1312.6199.

[3] Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. 2014.

arXiv:1412.6572.

[4] Kurakin A, Goodfellow I, Bengio S. Adversarial examples in the physical world. 2016.

arXiv:1607.02533.

[5] Dong Y, Liao F, Pang T, Su H, Zhu J, Hu X, et al. Boosting adversarial attacks with momentum. In:

Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition; 2018 Jun 18–
23; Salt Lake City, UT, USA; 2018. p. 9185–193.

[6] Carlini N, Wagner D. Towards evaluating the robustness of neural networks. In: Proceedings of the

2017 IEEE Symposium on Security and Privacy; 2017 May 22–26; San Jose, CA, USA; 2017. p. 39–

57.

[7] Zheng T, Chen C, Ren K. Distributionally adversarial attack. 2018. arXiv:1808.05537.

[8] Moosavi-Dezfooli SM, Fawzi A, Fawzi O, Frossard P. Universal adversarial perturbations. In:

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–

26; Honolulu, HI, USA; 2017. p. 1765–73.

[9] Xiao C, Li B, Zhu JY, He W, Liu M, Song D. Generating adversarial examples with adversarial

networks. 2018. arXiv:1801.02610.

[10] Sharif M, Bhagavatula S, Bauer L, Reiter MK. Accessorize to a crime: real and stealthy attacks on state-
of-the-art face recognition. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security; 2016 Oct 24–28; Vienna, Austria; 2016. p. 1528–40.

[11] Parkhi OM, Vedaldi A, Zisserman A. Deep face recognition. In: Proceedings of British Machine Vision

Conference; 2017 Sep 7–10; Swansea, UK; 2015.

[12] Brown TB, Mané D, Roy A, Abadi M, Gilmer J. Adversarial patch. 2017. arXiv:1712.09665.

[13] Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning models resistant to

adversarial attacks. 2017. arXiv: 1706.06083.

[14] Athalye A, Engstrom L, Ilya A, Kwok K. Synthesizing robust adversarial examples. 2017.

arXiv:1707.07397.

[15] Dhillon GS, Azizzadenesheli K, Lipton ZC, Bernstein J, Kossaifi J, Khanna A, et al. Stochastic

activation pruning for robust adversarial defense. 2018. arXiv: 1803.01442.

[16] Xu W, Evans D, Qi Y. Feature squeezing: detecting adversarial examples in deep neural networks.
2017. arXiv: 1704.01155.

[17] Meng D, Chen H. MagNet: a two-pronged defense against adversarial examples. In: Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security; 2017 Oct 30–Nov 3;

New York, NY, USA; 2017. p. 135–47.

ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 47
 Vol. 3, No. 1, April 2021, pp. 1-9

 Shorya Sharma (Multi-SAP Adversarial Defense for Deep Neural Networks)

[18] Neal RM. Bayesian learning for neural networks. New York: Springer Science & Business Media; 2012.

[19] Yang Z, Li B, Chen PY, Song D. Characterizing audio adversarial examples using temporal

dependency. 2018. arXiv:1809.10875.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition.

2015. arXiv:1512.03385

[21] Karen Simonyan,Andrew Zisserman. Very Deep Convolutional Networks for Large Scale Image

Recognition.2015.arXiv:1409.1556

