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1. Introduction  

Adversaries can easily fool state-of-the-art deep learning models by making small perturbations 

in the training samples that are imperceptible to a human. Such perturbed samples are called 

adversarial samples, and attacks on deep learning models that make use of adversarial samples 

are called adversarial attacks. For a successful attack, we require adversarial samples to be as 

close as possible to the original (benign) sample, under specific distance metrics. Therefore, these 

adversarial perturbations can be found by minimizing an objective function, a distance metric 

between adversarial and benign samples, subject to certain constraints. The threat model for 

adversarial attacks can be one out of black-box, grey-box or white-box, depending on the 

attacker’s knowledge of the target deep learning model. We plan to develop our defense in a 

black-box setting, where we assume that the adversary has no knowledge about the target model. 

In an adversarial setting, “attacker” and “defender” can be thought of as two parties playing a 

multi- move game, taking alternative turns to play their move. A successful “attack” will be a 

gain for the attacker and a loss for the defender, and likewise, a successful “defense” will be a 

gain for the defender and a loss for the attacker. Thus, this approach manifests itself into a zero-

sum two-person

ART IC LE  INF O  

 

ABST RACT   

 

 

Article history 

Received December 10, 2021 

Revised December 27, 2021 

Accepted Mar 19, 2022 

 Deep learning models have gained immense popularity for machine 
learning tasks such as image classification and natural language 
processing due to their high expressibility. However, they are vulnerable 
to adversarial samples - perturbed samples that are imperceptible to a 
human, but can cause the deep learning model to give incorrect 
predictions with a high confidence. This limitation has been a major 
deterrent in the deployment of deep learning algorithms in production, 
specifically in security critical systems. In this project, we followed a 
game theoretic approach to implement a novel defense strategy, that 
combines multiple Stochastic Activation Pruning with adversarial 
training. Our defense accuracy outperforms that of PGD adversarial 
training, which is known to be the one of the best defenses against several 
L∞ attacks, by about 6-7%. We are hopeful that our defense strategy can 
withstand strong attacks leading to more robust deep neural network 
models. 

 

This is an open access article under the CC–BY-SA license. 

    

 

 

Keywords 

Adversarial attacks 

Adversarial defenses 

Stochastic activation pruning 

Deep neural networks 

PGD 

FGSM  

 

 



ISSN 2714-7533 International Journal of Advanced Science Computing and Engineering 33 
 Vol. 4, No. 1, April 2022, pp. 32-47 
 

           

∞

game. We hypothesize that such a zero-sum game approach will enable us to develop a strong 

adversarial defense. 

We designed our mixed strategy defense that builds on the Stochastic Activation Pruning (SAP) 

algorithm. Stochastic Activation Pruning is a method which stochastically drops out nodes in each 

layer during forward propagation. The SAP function converts the activation map of a layer to a 

multinomial distribution and samples the nodes with replacement with a probability proportional to 

their activation magnitudes. Unlike the original SAP algorithm [15], we leverage the SAP method to 

create a novel technique utilizing multiple SAP (Multi-SAP) networks. Instead of creating a single 

model, this multi-SAP method iterates over the SAP function multiple times creating differently 

pruned networks attributed to the variation in sampling in every iteration. We implemented two 

defense strategies using multi-SAP on top of adversarial training which improved PGD adversarial 

defense accuracy by roughly 6-7%. 

2. Related Works 

There has been an extensive repertoire of work on adversarial attacks and defenses, a few of which 

have been discussed in the sections below. 

2.1 State-of-the-art Attacks 

As discussed in Section 1, adversaries can fool deep learning models by making small perturbations 

in the training samples, that are imperceptible to the human eye. This creates adversarial samples, 

and such attacks against deep learning models are called adversarial attacks. For a successful attack, 

we require such adversarial samples to be as close as possible to the original (benign) sample, under 

specific distance metrics (of which the most commonly used metric is the Lp metric). Therefore, these 

adversarial perturbations can be found by minimizing an objective function, a distance metric 

between adversarial and benign samples, subject to certain constraints. 

For adversarial attacks on image classification, one of the most common distance metrics has been 

the Lp norm [1]. For instance, the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

method minimizes the Lp norm between the benign and adversarial sample, subject to the constraint 

that their labels are not equal [2]. Goodfellow et al proposed an untargeted attack (Fast Gradient Sign 

Method (FGSM)), that generates samples in the L∞ neighborhood of benign samples. They performed 

one-step updates along the direction of the gradient to increase the loss in the steepest direction [3]. 

Following this work, Kurakin et al implemented a Basic Iterative Method (BIM) that improved the 

performance of FGSM by running a finer iterative optimizer [4]. Building on this, Dong et al 

incorporated momentum memory into BIM, called the momentum-iterative FGSM (MI-FGSM), 

inspired by momentum-based optimization [5]. However, the most successful attacks using this 

approach have been proposed by Carlini and Wagner, in which they generated L0, L2, and L∞ norm 

measured samples, and solved an optimization problem similar to the L-BFGS attack. They achieved 

a 100% attack success rate on the MNIST, CIFAR-10 and Imagenet datasets [6]. 

Instead of optimizing on individual samples like the techniques discussed above, Zheng et al 

proposed an attack that optimized over the potential adversarial distributions (called distributionally 

adversarial attack (DAA)) [7]. Another interesting approach is the Universal Adversarial Attack [8], 

which tries to find the minimum additional perturbations that can be added to a benign sample to 

make it adversarial. This approach relies on an iterative procedure to update the perturbation vector 

and has demonstrated successful results against CaffeNet, ResNet, GoogleNet and VGG. Recently, 

Generative Adversarial Networks (GAN)-based attacks were proposed to generate adversarial 

samples. In these attacks, Xiao et al trained a generator to maximize adversarial loss and GAN loss 

to learn the adversarial distribution [9]. Additionally, adversarial patches can be added to specific 
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sections of a benign sample, that can perturb a patch of the image leading to misclassification [10, 

11, 12]. 

2.2 State-of-the-art Defenses 

Despite their breakthrough applications, DNNs are vulnerable to adversarial attacks. Various classes 

of methods can handle these attacks, namely, adversarial training, randomization, denoising etc. The 

most common defense technique is adversarial training where adversarial samples generated from 

adversarial attacks are fed into DNNs during training to increase their robustness against adversaries. 

It is similar to a min-max game where we try to minimize the loss from the most effective adversarial 

samples. FGSM adversarial training uses both benign and FGSM generated adversarial samples to 

train the DNN. Projected Gradient Descent (PGD) adversarial training has proven to be the best 

defense against L∞ based attacks [13]. However, it requires high computational resources making it 

inefficient. Ensemble adversarial training uses a more diverse set of samples for training making it 

more effective. Additionally, Generative adversarial training-based defenses employ a generator, a 

discriminator, and an auxiliary classifier to make the DNN more robust to these attacks. 

Further, another class of defense techniques use randomization schemes to mitigate the effect of 

adversarial perturbations which usually work well for black-box and grey-box attacks but fail for the 

white-box setting [14]. The random input transformation technique resorts to resizing/padding of 

input images followed by training. Random noising, aka random self-ensemble, adds a noise layer 

before each convolution layer and ensembles the prediction results over these random noises to 

stabilize DNNs. Moreover, stochastic activation pruning is a mixed defense strategy where a random 

subset of activations is pruned and the survivors are scaled up for compensation [15]. 

Apart from these techniques, denoising techniques aim at removing the perturbations from the input 

itself or alleviate their effects on the high-level features learnt by DNNs. Conventional input 

rectification is one such technique which uses bit reduction and image blurring to remove the 

perturbations [16]. Defense GAN searches for an image close to the adversarial input to learn the 

distribution and generate benign samples that can be fed into the classifier. MagNet, an autoencoder 

based denoising has a detector and a reformer where the detector distinguishes between the 

adversarial and benign samples and the reformer tries to rectify the adversarial samples into benign 

samples. Feature denoising tries to minimise a feature level loss function to reduce the difference 

between the benign and the adversarial samples [17]. 

2.3 Our attacks and defenses 

Gradient based attacks leverage the backpropagation process to develop a perturbation vector for the 

input image by making a slight change to the input gradients. These methods consider model 

parameters to be constant and the input to be a variable which in turn is used to obtain the perturbation 

vector. This vector satisfies the condition of being very similar to the input while fooling the neural 

network model at the same time such that it’s imperceptible to the human eye. FGSM and PGD are 

two such gradient based attacks. 

The two main approaches to perform gradient-based attacks are one-shot and iterative attacks. In 

one-shot attacks, the attacker takes a single step along the direction of the gradient, whereas in 

iterative attacks, the attacker takes several steps, instead of a single one. The FGSM method is a one-

shot attack, whereas PGD is an iterative attack. 

2.3.1 FGSM Attack 

The Fast Gradient Sign Method (FGSM) is a form of untargeted attack, proposed by Goodfellow et 

al, that generates adversarial 
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samples in the L∞ neighborhood of benign samples. It generates adversarial images by adding pixel-

wide perturbations along the direction of the gradient. An FGSM-generated adversarial sample can 

be defined as, 

 

In the above equation, x is the benign sample that has been perturbed by the addition of the gradient 

to obtain an adversarial image, x’. The gradient can be computed as shown in equation (2), where δ 

is 0 in the first time-step. δ can be adjusted according to a step size α (given by equation (3)), such 

that δ lies in the range [-ϵ, ϵ], thereby satisfying the inequality in equation (4). 

 

 

 

 

Figure 1. Adversarial training defense illustration 

2.3.2 PGD Attack 

Projected Gradient Descent (PGD) is an iterative attack where it takes the same step as an FGSM 

multiple times in the direction of maximising loss on a particular input while keeping the size of 

perturbation smaller than epsilon. In PGD, one starts from a random perturbation in the L∞ space 

around an input and takes a gradient step in the direction of greatest loss in an iterative manner until 

convergence. To satisfy the constraint, the PGD projects the adversarial samples learned from each 

iteration in the epsilon constrained L∞ space of the benign input sample. 

 

2.3.3 Adversarial training defense 

Adversarial training is the most common defense technique is adversarial defense where adversarial 

samples generated from adversarial attacks are fed into DNNs during training to increase their 

robustness against adversaries. In simple terms, it is like an added data augmentation step where 

perturbed images are fed into the model as a preprocessing step where these perturbed images are 

created to best fool the deep neural-network model and train to reduce overfitting. Figure 1 

demonstrates a visualization of adversarial training defense. 
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2.3.4 Stochastic Activation Pruning (SAP) 

Stochastic Activation Pruning is a method which stochastically drops out nodes in each layer during 

forward propagation. The probability of retaining a node is directly proportional to the magnitude of 

its activation. So, the SAP function converts the activation map of a layer to a multinomial 

distribution and samples the nodes with replacement with a probability proportional to their 

activation magnitudes. Equation 6 shows the probability of sampling the j’th activation value, (hi)j.  

After pruning, the remaining surviving nodes are scaled up by the inverse of the probability of 

sampling the nodes over all the draws, following equation 7. 

 

 

 

 

 

Figure 2. Illustration of SAP 

3. Dataset Description 

CIFAR-10 is a benchmark dataset used to evaluate image recognition classification tasks. It consists 

of 10 classes with 6,000 32x32 colour images each. The 10 different classes represent airplanes, cars, 

birds, cats, deer, dogs, frogs, horses, ships and trucks. The dataset comprises a total of 50,000 training 

images and 10,000 test images. We have imported the train and test data from torchvision and have 

also augmented the train dataset by horizontally flipping the images. Since most of the research has 

been done using the CIFAR-10 dataset, we believe that it will be a good benchmark to compare our 

model against state-of-the-art attacks and defenses. Another advantage of this dataset is that it is 

computationally modest. 

4. Evaluation Metrics 

The objective of adversarial attacks is to fool a classifier into misclassifying samples that are only 

slightly perturbed from original samples in a way that is imperceptible to a human. Accordingly, to 

evaluate our adversarial attack or defense, we need a metric that can capture how many samples are 

correctly classified by our classifier in different scenarios such as when the input images are 

unperturbed, when they are perturbed using a certain attack technique and when the model has been 
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defended using a certain defense technique. Thus, we use accuracy as our evaluation metric, which 

we define as the percentage of images that are correctly classified by our classifier. A higher accuracy 

means that our classifier is doing a good job, whereas a low accuracy means that our classifier is not 

being able to perform the classification task properly. A good attack would ideally be successful in 

lowering the baseline accuracy of the classifier, whereas a strong defense would be able to sustain 

the attack and still give a high accuracy for classification. 

5. Description of Baseline Model 

Our adversarial attack and defense setting is on an image classification task where we perturb benign 

input images to confuse a trained deep neural network. For our project, we have used two kinds of 

convolutional neural networks, namely, ResNet18 and VGG16, as the defender model and the 

attacker model respectively. The reason behind choosing two different models for attack and defense 

has been explained in the subsequent sections. We first implemented the CIFAR-10 classifiers, then 

implemented our attacks on the defense model using the attack model, following which we developed 

and evaluated our defenses on the defense model. We discuss each of the above steps in detail below. 

 

Figure 3. Flow of an Adversarial Attack 

5.1 CIFAR-10 Classifiers 

5.1.1 Defense model 

ResNet18 [20] is a convolutional neural network that consists of 18 layers. The input image for a 

ResNet model is 224x224, whereas the CIFAR10 dataset consists of images of size 32x32. The 

parameters of the network have been adjusted to accommodate for the smaller size of images in this 

dataset. The network consists of several convolutional layers with feature map dimensions of [64, 

128, 256, 512], kernel size of 3x3 and appropriate stride and padding values at each layer to obtain 

the suitable input sizes for each hidden layer. Each convolution layer is also followed by a batchnorm 

and activation layer, with appropriate skip connections. It is concluded with an adaptive average 

pooling layer and a 10-way fully-connected linear layer, to obtain the classification results. Xavier 

normal initialization was used for the weights of the convolutional and linear layers. When this model 

was trained using an SGD optimizer with a learning rate of 0.15, weight decay of 1e-3, momentum 

of 0.9, a StepLR scheduler with gamma of 0.85 for 40 epochs, a test accuracy of 92% was achieved. 
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5.1.2 Attack model  

The VGG16 model [21] is also a convolutional neural network, that consists of 16 layers. The 

parameters of the model are set according to an input image size of 224x224, which have been 

adjusted to accommodate for the smaller size of images (32x32) in the CIFAR-10 dataset. It consists 

of several convolutional layers with feature map dimensions of [64, 128, 256, 512], kernel size of 

3x3 and appropriate stride and padding values at each layer to obtain the suitable input sizes for each 

hidden layer. Every convolutional layer is also followed by batchnorm and activation layers, 

following which every second convolutional layer consists of a max pooling layer, with a kernel size 

of 2x2 max pooling layer and a 10-way fully-connected linear layer, to obtain the classification 

results. Xavier normal initialization was used for the weights of the convolutional and linear layers. 

When this model was trained using an ADAM optimizer with a learning rate of 1e-3, weight decay 

of 5e-6, momentum of 0.9, a StepLR scheduler with gamma of 0.85 for 40 epochs, a test accuracy of 

89.32% was achieved. 

Table 1. Classification accuracy of various combinations of attacks and defenses 

Attack Model 

(VGG 16) 

Defense Model (ResNet18) 

Base Classifier FGSM Trained 

Model 

PGD Trained 

Model 

FGSM & PGD 

Combined Model 
PGD Attack 30,64% 37,55% 61,74% 64,26 

FGSM Attack 37,26% 71,91% 71,76% 71,47% 

 

5.2 Attacks 

Most of the existing work on adversarial attacks using Lp norm uses L∞ attacks, and hence, for our 

baseline attack, we decided to concentrate only on L∞ attacks. L∞ norm is defined as the maximum 

of the absolute values of a vector’s components. L∞ distance or max norm distance looks at the 

maximum pixel difference between the actual image and the adversarial image. The objective of an 

L∞ adversarial attack is to limit the L∞ norm of the noise to a certain value(epsilon) such that the 

adversarial image is as close as possible to the input but at the same time different enough for the 

model to misclassify. We decided to implement two of the most common L∞ attacks, namely Fast 

Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). 

We implemented these attacks using the Pytorch framework, following the equations described in 

Section 2. We followed the approach illustrated in Figure 3 to emulate the attacker. We used the 

attack model MA (VGG16) to generate adversarial image set Ai using an attack technique TA, and then 

fed these adversarial images into our defense model MD (ResNet18) for classification. For the attack 

technique TA, we experimented with both FGSM and PGD attacks, the choice of hyper-parameters 

for which are discussed in the Evaluation Section 5.4. 

5.3 Defenses 

We chose to go ahead with adversarial training for our baseline defense strategy because it is a very 

common method of adversarial defense, and it is quite trivial to implement. Our defense approach 

using adversarial training followed the workflow as illustrated in the blue “Defense” box in Figure 

3. We used an attack technique TB on our defense model MD (ResNet18) to generate adversarial 

image set Aj, and then trained MD using images from Aj. In our approach, we experimented with 

generating Aj using both FGSM and PGD attack methods, and tested our defense against both the 

attack techniques. We used the same code that we had used for our attack implementations to 

generate adversarial samples, but for defense, we used the defense model MD (ResNet18) instead. 

We discuss the effectiveness of the defense and summarize our findings in the next subsection. 
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5.4 Experimental Evaluation 

We tried to emulate a setting as close to a grey-box setting as possible in our baseline experiments. 

We first assumed that both the attacker and the defender do not know the kind of model that is being 

used by the other party. We achieved this by using two different types of models for attack and 

defense, namely, ResNet-18 as our defense model MD and VGG16 as our attack model MA. 

We first attacked the defense model MD with adversarial images generated from the attack model MA 

using both FGSM and PGD attacks separately. For the FGSM attack, we tuned the hyperparameter 

ϵ to obtain the best attack. Using an ϵ value of 0.15, the generated perturbed images were successful 

in bringing down the accuracy of MD from 92% to 37.26%. For the PGD attack, we tuned three hyper-

parameters (α, ϵ and number of iterations) such that the product of ϵ and number of iterations is 

approximately equal to the value of α. Using the values of 50, 1/255 and 0.2 for α, number of 

iterations and ϵ respectively, the generated adversarial images brought down the accuracy of MD from 

92% to 30.64%. 

We then implemented our defenses on MD and evaluated the robustness of the defense against both 

FGSM and PGD attacks. The hyperparameters that we chose for both FGSM and PGD adversarial 

training were different from those in our attacks, and this was another attempt to emulate a grey-box 

setting - the defender does not know what hyperparameters were chosen by the attacker even if they 

know the attack method. Our first defense mechanism was training MD using FGSM generated 

adversarial images from MD, for which we chose an ϵ value of 0.05. This defense was able to resist 

well against FGSM attack, and the model accuracy came down to only 71.91%, in contrast to the 

initial drop to 37.26%. However, this defense performed poorly against PGD attack, and the accuracy 

of the MD still came down to 37.55%. 

Our second defense approach involved training MD using adversarial images generated using the 

PGD attack on MD, and we chose the hyperparameter values of 40, 2/255 and 0.3 for α, number of 

iterations and ϵ respectively. This defense was able to resist FGSM attack almost as well as the FGSM 

adversarial training approach, and the defended model achieved an accuracy of 71.76%. It performed 

decently, though not as effectively, on PGD attack too, with MD achieving an accuracy of 61.74%. 

We also tried a combined defense technique, by adversarially training MD using both FGSM and 

PGD generated adversarial images, and this performed almost as well as PGD defense against FGSM 

attack, with MD achieving an accuracy of 71.47%, but slightly better than PGD defense against PGD 

attack, enabling MD to achieve an accuracy of 64.26%. The table in figure 4 gives a summary of our 

classification accuracy for various attacks and defenses. 

6. Our Contribution 

6.1 Intuition 

A preliminary strategy that we used in our baseline was to have multiple L attacks on our defense 

model (ResNet18) and measure the impact of each on the accuracy. Another reason to have multiple 

attacks was to train our defense model on more than one to make it more robust. Ideally, we would 

want to have our defense model to be adversarially trained against all possible attacks, but this can 

be a computational nightmare. Since we can’t adversarially train our defense model on all possible 

attacks, we hypothesize that having a defense network consisting of multiple adversarially trained 

models that are different from each other, and taking a combination or intelligent selection of the 

classification results from these diverse models is more robust against a variety of attacks. This 

method should make it difficult for the attacker to emulate the defense network since implementing 

an attack against a large number of models is computationally expensive. 
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We can also tie this strategy back to the zero-sum two player game in game theory, in which the 

maxmin value is the highest value that the attacker (Player 1) can be sure to get without knowing the 

defender’s (Player 2’s) moves, and equivalently, it is also the lowest value the defender can force the 

attacker to receive when they know their moves. Thus, we can replicate this game theory based mixed 

strategy by using a set of diverse models to reduce the reward that an attacker gets by making an 

intelligent classification decision that is based on the input, that is, the attacker’s move. 

6.2 Diverse Network Creation 

To test our hypothesis, our first step was to create a set of multiple models. We used three different 

methods to create different models from the ResNet18 base network. The first method was to use 

different subsets of the training dataset to train our model while keeping the accuracy levels close to 

the baseline model. The second method was to use different weight initializations and train the model 

on the entire training dataset. The final method involved the addition of skip connections every fourth 

and sixth layers in the ResNet architecture. 

The second step was to adversarially train these multiple models because we wanted to leverage both 

diversity and adversarial training to defend against an attack. Diversity among the models would 

ensure that not all the models fail against a particular attack and that the majority of them will still 

succeed against the attack. This way we can take the majority vote from these models and predict the 

correct class. Thus if not all, some of the robust networks will be able to defend against the attack. 

We created a pool of models containing both vanilla and adversarially trained models. However, 

having multiple models was not enough and it was important to ensure that these models were 

diverse. 

For checking the diversity of the models in the pool that we created, we tried to find the correlation 

between the models. A lower correlation between two models would indicate that they are more 

diverse, whereas a higher correlation would indicate that they are less diverse. We computed the 

correlation between two models by calculating the cosine similarity between the gradients of the loss 

of the models with respect to the test datum . The pairwise correlation values that we obtained using 

this method for our set of models were quite low and seemed to suggest that our models were diverse. 

However, when we tested these models against FGSM attack, they performed as poorly as our 

baseline model, and in some cases even worse. Given our hypothesis that having a diverse set of 

uncorrelated models implies that not all models fail against a particular attack, we also tried to 

randomly pick a model from our pool to classify each input, hoping that the inherent diversity would 

yield more robustness. However, we found that this technique did not work either, and performed 

poorly against the attack. 

We thus realized that the low values of correlation as a test of diversity was misleading. As an 

alternative method, we turned to a naive method of calculating the number of agreements and 

disagreements in the predictions of the models to gauge how diverse they are from one another. If a 

set of models are robust to an adversarial image, we would expect them to give the correct prediction, 

and be in agreement with each other. However, if the attack is successful, then the models would 

give incorrect predictions. In this scenario, if we look at the incorrect predictions of the set of models 

and find that they are the same incorrect predictions, then we can say that the models are not diverse 

from one another. Our calculated agreement and disagreement numbers between the models 

indicated that they were not very diverse to one another, but it was still difficult to ascertain anything 

about the diversity using these numbers. We summarized all of these experiments and the results in 

Section 6.4. 
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6.3 Stochastic Activation Pruning 

After conducting the diversity tests as explained in the above section, we realized that our approaches 

for creating models were not producing a very diverse pool of models. Thus, we tried to find a new 

method to create a pool of diverse networks. We decided to try Stochastic Activation Pruning 

(SAP)[15] which is activated after receiving the input (attacker’s last move). This was a better 

approach because instead of finding new methods to create new models and training them, we could 

just use our existing models and prune them without any need for further training, saving us tons of 

time. 

Stochastic Activation Pruning is a method which stochastically drops out nodes in each layer during 

forward propagation. The probability of retaining a node is directly proportional to the magnitude of 

its activation. So, the SAP function converts the activation map of a layer to a multinomial 

distribution and samples the nodes with replacement with a probability proportional to their 

activation magnitudes. After pruning, the remaining surviving nodes are scaled up by the inverse of 

the probability of sampling the nodes over all the draws. In our case, we are performing SAP after 

every ReLU layer and sampling 100% of the nodes every layer. Unlike the SAP paper, we wanted to 

leverage the novel SAP method to create multiple SAP (Multi-SAP) networks instead of creating 

just one by iterating over the SAP function multiple times which creates differently pruned networks 

attributed to the variation in sampling in every iteration. 

6.3.1 Novel Multi-SAP Defense Approach 

Our updated defense strategy was to apply Multi-SAP on adversarially trained models and then take 

a majority vote of classification results from these models. We experimented with two defense 

strategies to evaluate the efficacy of adding Multi-SAP on top of our adversarially trained models. 

In the first approach we built a set of 50 networks by applying SAP with 50 iterations to one 

adversarially trained base network. The second approach was to take a pool (for example 5) of 

adversarially trained networks and apply SAP on all of them for 10 iterations, each giving us 50 

networks. This combined with the initial five adversarially trained models gave us a total of 55 

models. Both the strategies were followed by taking a majority vote of classification results obtained 

from the diverse set of networks to obtain a final prediction. A visualization of this can be observed 

in Figure 4. 

6.4 Experimental Evaluation and Results 

6.4.1 Creation of multiple networks 

Our first step towards testing our hypothesis was the creation of multiple models from the ResNet18 

base network. While creating these multiple models, we ensured that the classification accuracy was 

close to that of the baseline model (92%). Several methods were implemented: 
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Figure 4. Visualization of our novel Multi-SAP approach 

1. Different training data subsets and random seeds: We took different subsets of the training 

dataset and trained them separately to obtain multiple models. We considered a range of values 

between 30% to 100% of the training data. However, it was observed that considering less than 

50% of the training data brought the classification accuracy to lesser than 80%. Therefore, we 

retained only those models that were trained on greater than 50% of the training dataset. We 

created four such models that were generated from 50%, 62.5%, 75% and 87.5% of the training 

data. We also used different random seeds that resulted in sampling different training data points 

when 75% of the training data was used. 

2. Different weight initializations: We used different weight initialization methods for the 

convolutional and final linear layer, to create different models. For the purpose of our experi- 

ments, we have used kaiming-uniform, kaiming-normal and orthogonal weight initializations 

and trained these on the complete training dataset.  

3. Addition of skip-connections: Our final method involved the addition of skip connections 

every 4th and 6th layer. We created multiple models by adding more skip connections, in 

addition to those that are already present in the ResNet18 model. We created two such models 

by adding an additional skip connection every fourth and sixth layer. 

6.4.2 Diversity tests 

Our next step was to check the amount of diversity between the above-created models and if these 

models are diverse enough to defend against any attack. We did this through the following 

experiments: 

1. Correlation between gradients: We measured the correlation using Pytorch’s inbuilt function, 

nn. CosineSimilarity, that measures the cosine similarity between two tensors. We used this 
function to compute the cosine similarity between the gradients of pairwise models with respect 
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to the test datum as shown in table in Figure 6. A lower cosine similarity value denotes a lower 
correlation between the gradients, and therefore, greater diversity between the models. 

 
Table 2. Correlation between gradients 

 ½ train 5/8 train 7/8 train ¾ train Orthogonal Kaiming 

uniform 

Kaiming 

normal 

½ train - 0,2141 0,1724 0,1464 0,1235 0,1077 0,0882 

5/8 train - - 0,1993 0,1738 0,1720 0,1381 0,1368 

7/8 train - - - 0,0950 0,2074 0,1479 0,1096 

¾ train - - - - 0,2036 0,1990 0,0399 

Orthogonal - - - - - 0,2167 0,0696 

Kaiming 

uniform 

- - - - - - 0,1072 

 

From table in Figure 2, we observe that all models have really low correlation values ranging 

from 0.04 to 0.21 when calculated pairwise. The lowest being between 3/4th train and kaiming-

normal models. A low pairwise correlation between the models, from the table above, seemed 

to imply that our models are diverse. We then carried out the following defense approaches - 

(a) We performed the attack against this defense network (consisting of diverse models). Given our 

hypothesis that having a diverse set of uncorrelated models implies that not all models fail 

against a particular attack, we tried to randomly pick a model from our pool to classify each 

input, hoping that the inherent diversity would yield more robustness. However, we found that 

this technique did not work, and performed poorly against the FGSM attack. 

(b) Due to the failure of this defense strategy, we adversarially trained the pool of models using 

PGD adversarial training and created a new set with the adversarially trained models instead of 

the vanilla models. Our intuition behind adversarially training these models was that creating 

more robust individual models might improve our defense. Following the same hypothesis as 

stated above, we randomly picked a model from the new pool of adversarially trained models 

and tried to classify each input. However, this technique performed only as well as the baseline 

single adversarially trained ResNet18 model. 

(c) Finally, we tried to obtain a majority vote of predictions obtained from the pool of adversarially-

trained models, rather than randomly picking a model. This technique gave a 2-3% increase in 

the accuracy against FGSM attack compared to random selection. 

From these experiments, we realized that the low correlation values that we had obtained might 

not be a true test of the diversity between the models. 

2. Disagreements in model predictions: Since low values of correlation as a test of diversity was 

misleading, we tried an alternative approach to test the diversity between the models. As 
explained in Section 6.2, we calculated the number of disagreements in the predictions of the 

models, the results of which are tabulated in Tables 3 and 4. 

The number of disagreements are counted out of the predictions made for the 10,000 test images. 

As we see that ½ train seems to have more disagreements with the other models for both the 

attacks however, there is no concrete way to conclude that a particular number of disagreements 

can confirm diversity.  

Therefore, it was difficult to infer the amount of diversity between the models using the numbers 

shown in Tables 3 and 4. 
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After conducting the above tests for diversity, we realised that our initial two steps were not 

producing a very diverse pool of models. Therefore, we tried to implement the Stochastic 

Activation Pruning (SAP) method to create a pool of diverse networks. 

Figure 3. Number of disagreements in model predictions for FGSM attack 

FGSM Attack ½ train ¾ train orthogonal 7/8 train Kaiming 

uniform 
½ train - 3361 3286 3599 3405 

¾ train - - 2743 2934 3161 

Orthogonal - - - 2772 2404 

Kaiming 

uniform 

- - - - 3196 

 

Figure 4. Number of disagreements in model predictions for PGD attack 

FGSM Attack ½ train ¾ train orthogonal 7/8 train Kaiming 

uniform 

½ train - 3603 3658 4220 3650 

¾ train - - 3247 4040 3472 

Orthogonal - - - 3761 2784 

Kaiming 

uniform 

- - - - 4005 

 

6.4.3 SAP-based defense 

As discussed in the section above, we implemented two defense strategies using SAP. It is a method 

to stochastically drop nodes in each layer during forward propagation. A major advantage of this 

approach is that re-training the model is not necessary. SAP is applied to the activations of each layer 

in the neural network. The general algorithm of SAP is as follows: 

1. For each layer, we first normalize the activations to obtain a probability value. 

2. This is followed by converting each activation map into a multinomial distribution, such that the 

probability is directly proportional to the absolute value of the activations. 

3. Random samples are then drawn with replacement from the activation map according to this 

probability distribution. This method makes it easy to determine if an activation would be sampled 

at all. If it is not sampled, the activation is set to 0.  

4. If the activation is sampled, it is re-weighted to maintain the overall dynamic range of the 

activations. 

6.4.4 Defense Strategy 1 

In our first defense strategy, we use one base network, here, the base ResNet18 model and 

adversarially train it. As mentioned in the above Section, different models are produced every time 

SAP is applied, owing to the variation in sampling at each iteration. Therefore, we applied 50 random 

seeds and obtained 50 differently pruned models of the base adversarially trained model. We then 

obtained a majority vote among the classification results from each of these 50 models. The results 

are further elucidated in the Table 5. 

In the table, we demonstrate our defense technique against six L attacks, imported from the 

torchattacks library in Pytorch. The first column represents the defense performance when the attacks 

were performed against a single non-adversarially trained model. This is a vanilla model with no 

defense applied to it. The second column consists of the results when the base model was 
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∞

adversarially trained and hence the defense performance improved from the previous one. The final 

column demonstrates the results of Multi-SAP, which are comparable to those of adversarial defense. 

Table 5. Performance of defense strategy 1 against different L∞ attacks on the first 1000 test images of the 

CIFAR10 test data 

L∞ TORCH ATTACK Single Non adversarially 

trained model 

Single adversarially 

trained model 

Adversarially trained 

our SAP defense 

BIM 46% 55,70% 56,70% 

RFGSM 33,60% 50,10% 51,50% 

APGD 41,30% 54,60% 55,00% 

TPGD 36% 53,80% 54,60% 

FFGSM 37,90% 54,80% 55,13% 

MI-FGSM 41,60% 55,20% 56% 

 

Table 6. Performance of defense strategy 2 against different L∞ attacks on the first 1000 test images of the 

CIFAR10 test data 

L∞ TORCH ATTACK Single Non adversarially 

trained model 

Single adversarially 

trained model 

Adversarially trained 

our SAP defense 

BIM 46% 55,70% 62,40% 

RFGSM 33,60% 50,10% 56,10% 

APGD 41,30% 54,60% 60,70% 
TPGD 36% 53,80% 61,20% 

FFGSM 37,90% 54,80% 60,60% 

MI-FGSM 41,60% 55,20% 61,30% 

 

6.4.5 Defense Strategy 2 

In our second defense strategy, we utilize 5 different base networks that are obtained using different 

splits of training data and weight initializations. These 5 networks are then adversarially trained. 

Now, using 10 random seeds, we create 10 diverse networks from each of these five adversarially 

trained networks, thereby producing 50 diverse networks. These combined with the 5 non-SAP base 

adversarial networks produced a total of 55 networks. The results are further demonstrated in the 

table 6. 

In the table, we demonstrate our defense technique against six L∞ attacks, imported from the 

torchattacks library in Pytorch. The table follows the same format as Table 6 in the previous section. 

Here, the final column demonstrates the results of this strategy of Multi-SAP, which show an 

improvement of about 6-7% from the adversarial defense technique. As mentioned in the Literature 

Review, the PGD adversarially trained defense is one of the strongest defenses against most L attacks 

[13]. Our defense managed to outperform adversarial training as well, which can prove very 

promising. 

7. Conclution  

Adversarial attacks against state-of-the-art deep neural networks is indeed a tough battle to combat, 

and building models robust to these attacks is imperative for the adoption of such systems in the real 

world. We looked at this problem from a game theoretic perspective and were successful in designing 

a defense strategy against L∞ attacks that takes into account the attacker’s current move. The results 

obtained from our novel multi-SAP defense technique demonstrate that the usage of diverse networks 

on top of adversarial training can prove to be a strong defense. The fact that our defense outperforms 

PGD adversarial training, one of the most powerful defenses against L∞ attacks, by about 6-7%, is 

reflective of our contribution to the research in this area. 
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8. Future Work 

While it is impressive to come up with a novel defense strategy that outperforms PGD adversarial 

training, we think that we can improve our results by intelligently selecting classification results from 

the diverse models instead of using a simple majority vote. Additionally, detecting whether an input 

is adversarial or not after the attacker’s last move will help us further optimize our defense by running 

Multi SAP only in the case of an attack. Moreover, we can also tune the sampling parameter in the 

SAP algorithm and evaluate how it affects the accuracy numbers. We are hopeful that these additional 

steps will strengthen our defense and help us secure our deep learning systems. 
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